Topological Characteristics of the Hong Kong Stock Market: A Test-based P-threshold Approach to Understanding Network Complexity

نویسندگان

  • Ronghua Xu
  • Wing-Keung Wong
  • Guanrong Chen
  • Shuo Huang
چکیده

In this paper, we analyze the relationship among stock networks by focusing on the statistically reliable connectivity between financial time series, which accurately reflects the underlying pure stock structure. To do so, we firstly filter out the effect of market index on the correlations between paired stocks, and then take a t-test based P-threshold approach to lessening the complexity of the stock network based on the P values. We demonstrate the superiority of its performance in understanding network complexity by examining the Hong Kong stock market. By comparing with other filtering methods, we find that the P-threshold approach extracts purely and significantly correlated stock pairs, which reflect the well-defined hierarchical structure of the market. In analyzing the dynamic stock networks with fixed-size moving windows, our results show that three global financial crises, covered by the long-range time series, can be distinguishingly indicated from the network topological and evolutionary perspectives. In addition, we find that the assortativity coefficient can manifest the financial crises and therefore can serve as a good indicator of the financial market development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sectoral Growth and Centrality in Stock Market in Iran: Application of Complex Network Analysis

Stock price and its changes which reflect the individuals’ investment decisions in economic environment are the most important factors in evaluating the economic value of a company in stock market. Stock price changes are not independent of each other. Therefore, study of the correlation between stock price changes provides a better understanding of market performance for investors. Analysis of...

متن کامل

Stock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models

Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...

متن کامل

ارائه شاخصی جدید برای انعکاس رفتار بازار سهام با استفاده از رویکرد تحلیل شبکه‌های پیچیده

شاخص­های منعکس کننده رفتار بازار سهام یکی از مهم­ترین عوامل تأثیرگذار بر تصمیمات سرمایه­گذاران در بازارهای مالی است. اغلب سرمایه­گذاران در بورس اوراق بهادار تهران به شاخص کل بورس توجه دارند که تمامی شرکت­های پذیرفته شده در بورس را در بر می­گیرد. این مطالعه به معرفی شاخصی جدید با استفاده از روش­ شبکه­های پیچیده می­پردازد. شبکه­های پیچیده مطالعه همبستگی قیمت­های بازار سهام را به خوبی فراهم می­آور...

متن کامل

Re-usability of traffic signs for inactive drivers with consideration of personal characteristics and sign features

There has been an increasing concern about inactive drivers who would easily lead to road accidents and fatalities once return to driving. This study investigated the re-usability of traffic signs for inactive drivers with consideration of driver factors and cognitive sign features. Fifty-seven Hong Kong Chinese, who possessed a full driving license but had not driven for an extended period, co...

متن کامل

Forecasting the Tehran Stock market by Machine ‎Learning Methods using a New Loss Function

Stock market forecasting has attracted so many researchers and investors that ‎many studies have been done in this field. These studies have led to the ‎development of many predictive methods, the most widely used of which are ‎machine learning-based methods. In machine learning-based methods, loss ‎function has a key role in determining the model weights. In this study a new loss ‎function is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017